Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 516
Filtrar
1.
J Mol Cell Cardiol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734062

RESUMO

AIMS: Ferroptosis is a form of iron-regulated cell death implicated in ischemic heart disease. Our previous study revealed that Sirtuin 3 (SIRT3) is associated with ferroptosis and cardiac fibrosis. In this study, we tested whether the knockout of SIRT3 in cardiomyocytes (SIRT3cKO) promotes mitochondrial ferroptosis and whether the blockade of ferroptosis would ameliorate mitochondrial dysfunction. METHODS AND RESULTS: Mitochondrial and cytosolic fractions were isolated from the ventricles of mice. Cytosolic and mitochondrial ferroptosis were analyzed by comparison to SIRT3loxp mice. An echocardiography study showed that SIRT3cKO mice developed heart failure as evidenced by a reduction of EF% and FS% compared to SIRT3loxp mice. Comparison of mitochondrial and cytosolic fractions of SIRT3cKO and SIRT3loxp mice revealed that, upon loss of SIRT3, mitochondrial, but not cytosolic, total lysine acetylation was significantly increased. Similarly, acetylated p53 was significantly upregulated only in the mitochondria. These data demonstrate that SIRT3 is the primary mitochondrial deacetylase. Most importantly, loss of SIRT3 resulted in significant reductions of frataxin, aconitase, and glutathione peroxidase 4 (GPX4) in the mitochondria. This was accompanied by a significant increase in levels of mitochondrial 4-hydroxynonenal. Treatment of SIRT3cKO mice with the ferroptosis inhibitor ferrostatin-1 (Fer-1) for 14 days significantly improved preexisting heart failure. Mechanistically, Fer-1 treatment significantly increased GPX4 and aconitase expression/activity, increased mitochondrial iron­sulfur clusters, and improved mitochondrial membrane potential and Complex IV activity. CONCLUSIONS: Inhibition of ferroptosis ameliorated cardiac dysfunction by specifically targeting mitochondrial aconitase and iron­sulfur clusters. Blockade of mitochondrial ferroptosis may be a novel therapeutic target for mitochondrial cardiomyopathies.

2.
Mov Disord ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696306

RESUMO

BACKGROUND: Calcitriol, the active form of vitamin D (also known as 1,25-dihydroxycholecalciferol), improves the phenotype and increases frataxin levels in cell models of Friedreich ataxia (FRDA). OBJECTIVES: Based on these results, we aimed measuring the effects of a calcitriol dose of 0.25 mcg/24h in the neurological function and frataxin levels when administered to FRDA patients for a year. METHODS: 20 FRDA patients where recluted and 15 patients completed the treatment for a year. Evaluations of neurological function changes (SARA scale, 9-HPT, 8-MWT, PATA test) and quality of life (Barthel Scale and Short Form (36) Health Survey [SF-36] quality of life questionnaire) were performed. Frataxin amounts were measured in isolated platelets obtained from these FRDA patients, from heterozygous FRDA carriers (relatives of the FA patients) and from non-heterozygous sex and age matched controls. RESULTS: Although the patients did not experience any observable neurological improvement, there was a statistically significant increase in frataxin levels from initial values, 5.5 to 7.0 pg/µg after 12 months. Differences in frataxin levels referred to total protein levels were observed among sex- and age-matched controls (18.1 pg/µg), relative controls (10.1 pg/µg), and FRDA patients (5.7 pg/µg). The treatment was well tolerated by most patients, and only some of them experienced minor adverse effects at the beginning of the trial. CONCLUSIONS: Calcitriol dosage used (0.25 mcg/24 h) is safe for FRDA patients, and it increases frataxin levels. We cannot rule out that higher doses administered longer could yield neurological benefits. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Mov Disord ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686449

RESUMO

BACKGROUND: Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. OBJECTIVES: The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. METHODS: In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1). RESULTS: We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. CONCLUSIONS: We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Paediatr Anaesth ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655751

RESUMO

BACKGROUND: Friedreich ataxia is a rare genetic disorder associated with progressive mitochondrial dysfunction leading to widespread sequelae including ataxia, muscle weakness, hypertrophic cardiomyopathy, diabetes mellitus, and neuromuscular scoliosis. Children with Friedreich ataxia are at high risk for periprocedural complications during posterior spinal fusion due to their comorbidities. AIM: To describe our single-center perioperative management of patients with Friedreich ataxia undergoing posterior spinal fusion. METHODS: Adolescent patients with Friedreich ataxia presenting for spinal deformity surgery between 2007 and 2023 were included in this retrospective case series performed at the Children's Hospital of Philadelphia. Perioperative outcomes were reviewed along with preoperative characteristics, intraoperative anesthetic management, and postoperative medical management. RESULTS: Seventeen patients were included in the final analysis. The mean age was 15 ± 2 years old and 47% were female. Preoperatively, 35% were wheelchair dependent, 100% had mild-to-moderate hypertrophic cardiomyopathy with preserved systolic function and no left ventricular outflow tract obstruction, 29% were on cardiac medications, and 29% were on pain medications. Intraoperatively, 53% had transesophageal echocardiography monitoring; 12% had changes in volume status on echo but no changes in function. Numerous combinations of total intravenous anesthetic agents were used, most commonly propofol, remifentanil, and ketamine. Baseline neuromonitoring signals were poor in four patients and one patient lost signals, resulting in 4 (24%) wake-up tests. The majority (75%) were extubated in the operating room. Postoperative complications were high (88%) and ranged from minor complications like nausea/vomiting (18%) to major complications like hypotension/tachycardia (29%) and need for extracorporeal membrane oxygenation support in one patient (6%). CONCLUSIONS: Patients with Friedreich ataxia are at high risk for perioperative complications when undergoing posterior spinal fusion and coordinated multidisciplinary care is required at each stage. Future research should focus on the utility of intraoperative echocardiography, optimal anesthetic agent selection, and targeted fluid management to reduce postoperative cardiac complications.

5.
Cerebellum ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642239

RESUMO

Cerebellar pathology engenders the disturbance of movement that characterizes Friedreich ataxia (FRDA), yet the impact of cerebellar pathology on cognition in FRDA remains unclear. Numerous studies have unequivocally demonstrated the role of the cerebellar pathology in disturbed cognitive, language and affective regulation, referred to as Cerebellar Cognitive Affective Syndrome (CCAS), and quantified by the CCAS-Scale (CCAS-S). The presence of dysarthria in many individuals with ataxia, particularly FRDA, may confound results on some items of the CCAS-S resulting in false-positive scores. This study explored the relationship between performance on the CCAS-S and clinical metrics of disease severity in 57 adults with FRDA. In addition, this study explored the relationship between measures of intelligibility and naturalness of speech and scores on the CCAS-S in a subgroup of 39 individuals with FRDA. We demonstrated a significant relationship between clinical metrics and performance on the CCAS-S. In addition, we confirmed the items that returned the greatest rate of failure were based on Verbal Fluency Tasks, revealing a significant relationship between these items and measures of speech. Measures of speech explained over half of the variance in the CCAS-S score suggesting the role of dysarthria in the performance on the CCAS-S is not clear. Further work is required prior to adopting the CCAS-S as a cognitive screening tool for individuals with FRDA.

6.
Expert Opin Pharmacother ; : 1-11, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38622054

RESUMO

INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED: The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION: The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.

7.
Curr Pharm Des ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638052

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE: This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS: A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia," "treatment," "drug candidates," and "mechanisms of action." RESULTS: To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION: While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.

8.
Front Pharmacol ; 15: 1342965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567352

RESUMO

Quantitative measurement of physical activity may complement neurological evaluation and provide valuable information on patients' daily life. We evaluated longitudinal changes of physical activity in patients with Friedreich ataxia (FRDA) using remote monitoring with wearable sensors. We performed an observational study in 26 adult patients with FRDA and 13 age-sex matched healthy controls (CTR). Participants were asked to wear two wearable sensors, at non-dominant wrist and at waist, for 7 days during waking hours. Evaluations were performed at baseline and at 1-year follow-up. We analysed the percentage of time spent in sedentary or physical activities, the Vector Magnitude on the 3 axes (VM3), and average number of steps/min. Study participants were also evaluated with ataxia clinical scales and functional tests for upper limbs dexterity and walking capability. Baseline data showed that patients had an overall reduced level of physical activity as compared to CTR. Accelerometer-based measures were highly correlated with clinical scales and disease duration in FRDA. Significantly changes from baseline to l-year follow-up were observed in patients for the following measures: (i) VM3; (ii) percentage of sedentary and light activity, and (iii) percentage of Moderate-Vigorous Physical Activity (MVPA). Reduction in physical activity corresponded to worsening in gait score of the Scale for Assessment and Rating of Ataxia. Real-life activity monitoring is feasible and well tolerated by patients. Accelerometer-based measures can quantify disease progression in FRDA over 1 year, providing objective information about patient's motor activities and supporting the usefulness of these data as complementary outcome measure in interventional trials.

9.
J Neurol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520521

RESUMO

This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.

10.
Cerebellum ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520642

RESUMO

Friedreich's Ataxia (FRDA) is the leading cause of ataxia worldwide, but data on epidemiology and diagnostic journey are scarce, particularly in Latin America. Herein we estimated the prevalence of FRDA in the most populous Brazilian state and characterized the diagnostic odyssey of the disease. We received anonymized data of patients with FRDA from advocacy groups and physicians. Prevalence was estimated dividing the number of patients by the population of the state as reported in the last census. Patients were invited to answer an online survey to describe clinical data and diagnostic journey of the disease. FRDA estimated prevalence was 0.367:100,000, with a slight predominance of women (58.2% vs 41.7%). One hundred and four patients answered the survey (mean age of 37.3 ± 13.8 years; 75.9% classical and 24.0% late onset). On average, 6.2 ± 4.1 physicians were visited before reaching the diagnosis. Mean diagnostic delay was 7.8 ± 6.7 years; no difference between classical and LOFA groups was found. Most of the patients reported unsteadiness and gait abnormalities as the first symptom. Neurologists and orthopedical surgeons were the main specialties first sought by patients. We found a prevalence of 0.36:100,000 for FRDA in the state of São Paulo, Brazil. The disease is characterized by remarkable diagnostic delay, with no relevant differences between classical and LOFA patients.

11.
Front Pharmacol ; 15: 1352311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495102

RESUMO

Friedreich's ataxia (FRDA), the most common recessive inherited ataxia, results from homozygous guanine-adenine-adenine (GAA) repeat expansions in intron 1 of the FXN gene, which leads to the deficiency of frataxin, a mitochondrial protein essential for iron-sulphur cluster synthesis. The study of frataxin protein regulation might yield new approaches for FRDA treatment. Here, we report tumorous imaginal disc 1 (TID1), a mitochondrial J-protein cochaperone, as a binding partner of frataxin that negatively controls frataxin protein levels. TID1 interacts with frataxin both in vivo in mouse cortex and in vitro in cortical neurons. Acute and subacute depletion of frataxin using RNA interference markedly increases TID1 protein levels in multiple cell types. In addition, TID1 overexpression significantly increases frataxin precursor but decreases intermediate and mature frataxin levels in HEK293 cells. In primary cultured human skin fibroblasts, overexpression of TID1S results in decreased levels of mature frataxin and increased fragmentation of mitochondria. This effect is mediated by the last 6 amino acids of TID1S as a peptide made from this sequence rescues frataxin deficiency and mitochondrial defects in FRDA patient-derived cells. Our findings show that TID1 negatively modulates frataxin levels, and thereby suggests a novel therapeutic target for treating FRDA.

12.
Indian J Otolaryngol Head Neck Surg ; 76(1): 1247-1250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440644

RESUMO

Friedreich's ataxia is degenerative disease frequently starting around puberty and it's characterized by a progressive gait ataxia, limb weakness, apparition of Babinsky sign, loss of deep tendon reflex, dysarthria and skeletal deformities. The development of vestibular pathology is common but not completely understood. A 16 years old woman with early vestibular defects in relation to a latter Friedreich's ataxia diagnosis is reported.

13.
Mov Disord ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469957

RESUMO

BACKGROUND: Progressive loss of standing balance is a feature of Friedreich's ataxia (FRDA). OBJECTIVES: This study aimed to identify standing balance conditions and digital postural sway measures that best discriminate between FRDA and healthy controls (HC). We assessed test-retest reliability and correlations between sway measures and clinical scores. METHODS: Twenty-eight subjects with FRDA and 20 HC completed six standing conditions: feet apart, feet together, and feet tandem, both with eyes opened (EO) and eyes closed. Sway was measured using a wearable sensor on the lumbar spine for 30 seconds. Test completion rate, test-retest reliability with intraclass correlation coefficients, and areas under the receiver operating characteristic curves (AUCs) for each measure were compared to identify distinguishable FRDA sway characteristics from HC. Pearson correlations were used to evaluate the relationships between discriminative measures and clinical scores. RESULTS: Three of the six standing conditions had completion rates over 70%. Of these three conditions, natural stance and feet together with EO showed the greatest completion rates. All six of the sway measures' mean values were significantly different between FRDA and HC. Four of these six measures discriminated between groups with >0.9 AUC in all three conditions. The Friedreich Ataxia Rating Scale Upright Stability and Total scores correlated with sway measures with P-values <0.05 and r-values (0.63-0.86) and (0.65-0.81), respectively. CONCLUSION: Digital postural sway measures using wearable sensors are discriminative and reliable for assessing standing balance in individuals with FRDA. Natural stance and feet together stance with EO conditions suggest use in clinical trials for FRDA. © 2024 International Parkinson and Movement Disorder Society.

14.
Front Pharmacol ; 15: 1323491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420191

RESUMO

Friedreich ataxia (FRDA) is a multisystemic, autosomal recessive disorder caused by homozygous GAA expansion mutation in the first intron of frataxin (FXN) gene. FXN is a mitochondrial protein critical for iron-sulfur cluster biosynthesis and deficiency impairs mitochondrial electron transport chain functions and iron homeostasis within the organelle. Currently, there is no effective treatment for FRDA. We have previously demonstrated that single infusion of wild-type hematopoietic stem and progenitor cells (HSPCs) resulted in prevention of neurologic and cardiac complications of FRDA in YG8R mice, and rescue was mediated by FXN transfer from tissue engrafted, HSPC-derived microglia/macrophages to diseased neurons/myocytes. For a future clinical translation, we developed an autologous stem cell transplantation approach using CRISPR/Cas9 for the excision of the GAA repeats in FRDA patients' CD34+ HSPCs; this strategy leading to increased FXN expression and improved mitochondrial functions. The aim of the current study is to validate the efficiency and safety of our gene editing approach in a disease-relevant model. We generated a cohort of FRDA patient-derived iPSCs and isogenic lines that were gene edited with our CRISPR/Cas9 approach. iPSC derived FRDA neurons displayed characteristic apoptotic and mitochondrial phenotype of the disease, such as non-homogenous microtubule staining in neurites, increased caspase-3 expression, mitochondrial superoxide levels, mitochondrial fragmentation, and partial degradation of the cristae compared to healthy controls. These defects were fully prevented in the gene edited neurons. RNASeq analysis of FRDA and gene edited neurons demonstrated striking improvement in gene clusters associated with endoplasmic reticulum (ER) stress in the isogenic lines. Gene edited neurons demonstrated improved ER-calcium release, normalization of ER stress response gene, XBP-1, and significantly increased ER-mitochondrial contacts that are critical for functional homeostasis of both organelles, as compared to FRDA neurons. Ultrastructural analysis for these contact sites displayed severe ER structural damage in FRDA neurons, that was undetected in gene edited neurons. Taken together, these results represent a novel finding for disease pathogenesis showing dramatic ER structural damage in FRDA, validate the efficacy profile of our FXN gene editing approach in a disease relevant model, and support our approach as an effective strategy for therapeutic intervention for Friedreich's ataxia.

15.
Clin Neurophysiol ; 159: 75-80, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38359552

RESUMO

OBJECTIVE: In Friedreich's ataxia research, the focus is on discovering treatments and biomarkers to assess disease severity and treatment effects. Our study examines high-resolution nerve ultrasound in these patients, seeking correlations with established clinical markers of disease severity. METHOD: Ten patients with Friedreich's Ataxia underwent a comprehensive clinical assessment with established scales (SARA, FARS, mFARS, INCAT, ADL 0-36, IADL). Additionally, they underwent nerve conduction studies and high-resolution nerve ultrasound. Quantitative evaluation of nerve cross-sectional area, conducted at 24 nerve sites using high-resolution nerve ultrasound, was compared with data obtained from 20 healthy volunteers. RESULTS: All the patients had a severe sensory axonal neuropathy. High-resolution nerve ultrasound showed significant increase, in cross sectional area, of median and ulnar nerves at the axilla and arm. The cumulative count of affected nerve sites was directly associated with clinical disability, as determined by SARA, FARS, mFARS, ADL 0-36, and INCAT score, while displaying an inverse correlation with IADL. CONCLUSIONS: Our study shows that high-resolution ultrasound reveals notable nerve abnormalities, primarily in the upper limbs of patients diagnosed with Friedreich's Ataxia. The observed correlation between these nerve abnormalities and clinical disability scales indicates the potential use of this technique as a biomarker for evaluating disease severity and treatment effects. SIGNIFICANCE: Nerve Ultrasound is a potential biomarker of disease severity in Friedreich's Ataxia.


Assuntos
Ataxia de Friedreich , Humanos , Ataxia de Friedreich/diagnóstico por imagem , Procedimentos Neurocirúrgicos , Ultrassonografia , Biomarcadores , Gravidade do Paciente
16.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
17.
Front Pharmacol ; 15: 1359618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379897

RESUMO

Friedreich's ataxia (FRDA) is a rare childhood neurologic disorder, affecting 1 in 50,000 Caucasians. The disease is caused by the abnormal expansion of the GAA repeat sequence in intron 1 of the FXN gene, leading to the reduced expression of the mitochondrial protein frataxin. The disease is characterised by progressive neurodegeneration, hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. The reduced expression of frataxin has been suggested to result in the downregulation of endogenous antioxidant defence mechanisms and mitochondrial bioenergetics, and the increase in mitochondrial iron accumulation thereby leading to oxidative stress. The confirmation of oxidative stress as one of the pathological signatures of FRDA led to the search for antioxidants which can be used as therapeutic modality. Based on this observation, antioxidants with different mechanisms of action have been explored for FRDA therapy since the last two decades. In this review, we bring forth all antioxidants which have been investigated for FRDA therapy and have been signed off for clinical trials. We summarise their various target points in FRDA disease pathway, their performances during clinical trials and possible factors which might have accounted for their failure or otherwise during clinical trials. We also discuss the limitation of the studies completed and propose possible strategies for combinatorial therapy of antioxidants to generate synergistic effect in FRDA patients.

18.
Mol Ther Methods Clin Dev ; 32(1): 101193, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352270

RESUMO

Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.

19.
Mol Cell ; 84(2): 359-374.e8, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199006

RESUMO

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Assuntos
Ataxia de Friedreich , Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Microscopia Crioeletrônica , Frataxina , Biossíntese de Proteínas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ataxia de Friedreich/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
20.
Heliyon ; 10(1): e23347, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163227

RESUMO

Objectives: Friedreich Ataxia (FRDA) is the most common recessive ataxia disorder. Yet, little is known of the prevalence in Sweden. In the future, there may be effective disease-modifying therapies, and use of clinical rating scales as well as possible biomarkers in serum or cerebrospinal fluid may be of importance. We evaluated the axonal protein neurofilament light in plasma (p-NfL) as a possible biomarker for disease severity in FRDA. Materials & methods: We searched for all possible genetically confirmed FRDA cases in the Västra Götaland Region (VGR) of Sweden, and investigated each patient clinically and obtained blood sample for analysis of p-NfL. Results: We found eight patients corresponding to 1/170.000 adults in the VGR, and 5 of these participated in the study. Three out of the five FRDA patients displayed a small or moderate increase in the p-NfL value, compared to the age-adjusted cut-offs for p-NfL established in the Clinical Neurochemistry Laboratory at our hospital. The two others were the oldest and most severely affected, displayed normal values according the cut-off values. The cohort is too small to make any statistically significant correlation between the five p-NfL values with regard to disease severity. Conclusions: FRDA is less prevalent in our region of Sweden than could be assumed. In concordance with previous studies from other authors, we find that p-NfL may be increased in patients with FRDA, but less so in older more clinically affected patients. Thus, we conclude that on an individual basis, p-NFL is of uncertain clinical value as a suitable biomarker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...